Adaptive Finite Element Methods for Elliptic Problems with Discontinuous Coefficients

نویسندگان

  • Andrea Bonito
  • Ronald A. DeVore
  • Ricardo H. Nochetto
چکیده

Elliptic partial differential equations (PDEs) with discontinuous diffusion coefficients occur in application domains such as diffusions through porous media, electro-magnetic field propagation on heterogeneous media, and diffusion processes on rough surfaces. The standard approach to numerically treating such problems using finite element methods is to assume that the discontinuities lie on the boundaries of the cells in the initial triangulation. However, this does not match applications where discontinuities occur on curves, surfaces, or manifolds, and could even be unknown beforehand. One of the obstacles to treating such discontinuity problems is that the usual perturbation theory for elliptic PDEs assumes bounds for the distortion of the coefficients in the L∞ norm and this in turn requires that the discontinuities are matched exactly when the coefficients are approximated. We present a new approach based on distortion of the coefficients in an Lq norm with q < ∞ which therefore does not require the exact matching of the discontinuities. We then use this new distortion theory to formulate new adaptive finite element methods (AFEMs) for such discontinuity problems. We show that such AFEMs are optimal in the sense of distortion versus number of computations, and report insightful numerical results supporting our analysis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Efficiency of Adaptive Finite Element Methods for Elliptic Problems with Discontinuous Coefficients

The successful implementation of adaptive finite element methods based on a posteriori error estimates depends on several ingredients: an a posteriori error indicator, a refinement/coarsening strategy, and the choice of various parameters. The objective of the paper is to examine the influence of these factors on the performance of adaptive finite element methods for a model problem: the linear...

متن کامل

Solving elliptic eigenvalue problems on polygonal meshes using discontinuous Galerkin composite finite element methods

In this paper we introduce a discontinuous Galerkin method on polygonal meshes. This method arises from the Discontinuous Galerkin Composite Finite Element Method (DGFEM) for source problems on domains with micro-structures. In the context of the present paper, the flexibility of DGFEM is applied to handle polygonal meshes. We prove the a priori convergence of the method for both eigenvalues an...

متن کامل

Adaptive Discontinuous Galerkin Methods for Fourth Order Problems

This work is concerned with the derivation of adaptive methods for discontinuous Galerkin approximations of linear fourth order elliptic and parabolic partial differential equations. Adaptive methods are usually based on a posteriori error estimates. To this end, a new residual-based a posteriori error estimator for discontinuous Galerkin approximations to the biharmonic equation with essential...

متن کامل

Discontinuous Galerkin Finite Element Approximation of Nondivergence Form Elliptic Equations with Cordès Coefficients

Abstract. Non-divergence form elliptic equations with discontinuous coefficients do not generally posses a weak formulation, thus presenting an obstacle to their numerical solution by classical finite element methods. We propose a new hp-version discontinuous Galerkin finite element method for a class of these problems that satisfy the Cordès condition. It is shown that the method exhibits a co...

متن کامل

Higher-order Immersed Discontinuous Galerkin Methods

We propose new discontinuous finite element methods that can be applied to one-dimensional elliptic problems with discontinuous coefficients. These methods are based on a class of higher degree immersed finite element spaces and can be used with a mesh independent of the location of coefficient discontinuity. Numerical experiments are presented to show that these methods can achieve optimal con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2013